Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 430
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(15): 10342-10356, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38574341

RESUMO

In acidic HZSM-5 zeolite, the reactivity of a methanol molecule interacting with the zeolite proton is amenable to modification via coadsorbing a stochiometric amount of an electron density donor E to form the [(E)(CH3OH)(HZ)] complex. The rate of the methanol in this complex undergoing dehydration to dimethyl ether was determined for a series of E with proton affinity (PA) ranging from 659 kJ mol-1 for C6F6 to 825 kJ mol-1 for C4H8O and was found to follow the expression: Ln(Rate) - Ln(RateN2) = ß(PA - PAN2)γ, where E = N2 is the reference and ß and γ are constants. This trend is probably due to the increased stability of the solvated proton in the [(E)(CH3OH)(HZ)] complex with increasing PA. Importantly, this is also observed in steady-state flow reactions when stoichiometric quantities of E are preadsorbed on the zeolite. As demonstrated with E being D2O, the effect on methanol reactivity diminishes when E is present in excess of the [(E)(CH3OH)(HZ)] complex. It is proposed that the methanol dehydration reaction involves [(E)(CH3OH)(CH3OH)(HZ)] as the transition state, which is supported by the isotopologue distribution of the initial dimethyl ether formed when a flow of CH3OH was passed over ZSM-5 containing one CD3OH per zeolite proton. The implication of this on the mechanism of catalytic methanol dehydration on HZSM-5 is discussed.

2.
J Phys Chem B ; 128(16): 4033, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38626398
3.
Artigo em Inglês | MEDLINE | ID: mdl-38647032

RESUMO

Vasodilator-stimulated phosphoprotein (VASP) family proteins play a crucial role in mediating the actin network architecture in the cytoskeleton. The Ena/VASP homology 2 (EVH2) domain in each of the four identical arms of the tetrameric VASP consists of a loading poly-Pro region, a G-actin-binding domain (GAB), and an F-actin-binding domain (FAB). Together, the poly-Pro, GAB, and FAB domains allow VASP to bind to sides of actin filaments in a bundle, and recruit profilin-G-actin to processively elongate the filaments. The atomic resolution structure of the ternary complex, consisting of the loading poly-Pro region and GAB domain of VASP with profilin-actin, has been solved over a decade ago; however, a detailed structure of the FAB-F-actin complex has not been resolved to date. Experimental insights, based on homology of the FAB domain with the C region of WASP, have been used to hypothesize that the FAB domain binds to the cleft between subdomains 1 and 3 of F-actin. Here, in order to develop our understanding of the VASP-actin complex, we first augment known structural information about the GAB domain binding to actin with the missing FAB domain-actin structure, which we predict using homology modeling and docking simulations. In earlier work, we used mutagenesis and kinetic modeling to study the role of domain-level binding-unbinding kinetics of Ena/VASP on actin filaments in a bundle, specifically on the side of actin filaments. We further look at the nature of the side-binding of the FAB domain of VASP at the atomistic level using our predicted structure, and tabulate effective mutation sites on the FAB domain that would disrupt the VASP-actin complex. We test the binding affinity of Ena with mutated FAB domain using total internal reflection fluorescence microscopy experiments. The binding affinity of VASP is affected significantly for the mutant, providing additional support for our predicted structure.

4.
Biophys J ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38549372

RESUMO

Phosphate, an essential metabolite involved in numerous cellular functions, is taken up by proton-coupled phosphate transporters of plants and fungi within the major facilitator family. Similar phosphate transporters have been identified across a diverse range of biological entities, including various protozoan parasites linked to human diseases, breast cancer cells with increased phosphate requirements, and osteoclast-like cells engaged in bone resorption. Prior studies have proposed an overview of the functional cycle of a proton-driven phosphate transporter (PiPT), yet a comprehensive understanding of the proposed reaction pathways necessitates a closer examination of each elementary reaction step within an overall kinetic framework. In this work, we leverage kinetic network modeling in conjunction with a "bottom-up" molecular dynamics approach to show how such an approach can characterize the proton-phosphate co-transport behavior of PiPT under different pH and phosphate concentration conditions. In turn, this allows us to reveal the prevailing reaction pathway within a high-affinity phosphate transporter under different experimental conditions and to uncover the molecular origin of the optimal pH condition of this transporter.

5.
J Phys Chem B ; 128(11): 2595-2606, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38477117

RESUMO

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated (Myr) N-terminal matrix (MA) domain of Gag, which eventually multimerize on the membrane to form trimers and higher order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex transient dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between the MA monomers and MA-membrane remain elusive in the context of viral assembly and release. Our present study focuses on the membrane binding dynamics of a higher order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of an MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest complex protein dynamics during the formation of the immature HIV-1 lattice; while MA trimerization facilitates Myr insertion, MA trimer-trimer interactions in the immature lattice can hinder the same.


Assuntos
HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , HIV-1/metabolismo , Montagem de Vírus , Membrana Celular/metabolismo , Ligação Proteica , Proteínas da Matriz Viral/química
6.
Biophys J ; 123(3): 389-406, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38196190

RESUMO

Although the structural rearrangement of the membrane-bound matrix (MA) protein trimers upon HIV-1 maturation has been reported, the consequences of MA maturation on the MA-lipid interactions are not well understood. Long-timescale molecular dynamics simulations of the MA multimeric assemblies of immature and mature virus particles with our realistic asymmetric membrane model have explored MA-lipid interactions and lateral organization of lipids around MA complexes. The number of stable MA-phosphatidylserine and MA-phosphatidylinositol 4,5-bisphosphate (PIP2) interactions at the trimeric interface of the mature MA complex is observed to be greater compared to that of the immature MA complex. Our simulations identified an alternative PIP2-binding site in the immature MA complex where the multivalent headgroup of a PIP2 lipid with a greater negative charge binds to multiple basic amino acid residues such as ARG3 residues of both the MA monomers at the trimeric interface and highly basic region (HBR) residues (LYS29, LYS31) of one of the MA monomers. Our enhanced sampling simulations have explored the conformational space of phospholipids at different binding sites of the trimer-trimer interface of MA complexes that are not accessible by conventional unbiased molecular dynamics. Unlike the immature MA complex, the 2' acyl tail of two PIP2 lipids at the trimeric interface of the mature MA complex is observed to sample stable binding pockets of MA consisting of helix-4 residues. Together, our results provide molecular-level insights into the interactions of MA trimeric complexes with membrane and different lipid conformations at the specific binding sites of MA protein before and after viral maturation.


Assuntos
HIV-1 , Simulação de Dinâmica Molecular , HIV-1/metabolismo , Ligação Proteica , Membranas/metabolismo , Lipídeos , Membrana Celular/metabolismo
7.
J Am Chem Soc ; 146(2): 1612-1618, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38170906

RESUMO

Amino acid ionic liquids (AAILs) are promising green materials for CO2 capture and conversion due to their large chemical structural tunability. However, the structural understanding of the AAILs underlying the CO2 reaction dynamics remains uncertain. Herein, we examine the steric effects of AAIL anions with various chemical structures on CO2 capture behavior. Based on ab initio free-energy sampling, we assess reaction mechanisms for carbamate formation via a two-step reaction pathway with a zwitterion intermediate undergoing dynamic proton transfer. Our results show that free-energy barriers for carbamate formation can be significantly reduced as the degree of steric hindrance of the anions decreases. Further analyses reveal that reduced steric hindrance of anions causes markedly stronger intermolecular interactions between zwitterion and anions, leading to an increased kinetically favorable intermolecular proton transfer for carbamate production. We also describe the correlation strength between intramolecular interactions within the zwitterion and intermolecular interactions between the zwitterion and anions. We conclude that the favored structural flexibility due to the less steric hindrance of the zwitterion leads to enhanced intermolecular interactions, facilitating proton transfer to nearby AAIL anions for carbamate formation. Our study provides invaluable insight into the influence of various degrees of steric hindrance of the AAIL anions governing CO2 chemisorption. These findings may aid in the design of optimal AAIL solvents for the CO2 capture process.

8.
Proc Natl Acad Sci U S A ; 121(4): e2313737121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241438

RESUMO

Nuclear import and uncoating of the viral capsid are critical steps in the HIV-1 life cycle that serve to transport and release genomic material into the nucleus. Viral core import involves translocating the HIV-1 capsid at the nuclear pore complex (NPC). Notably, the central channel of the NPC appears to often accommodate and allow passage of intact HIV-1 capsid, though mechanistic details of the process remain to be fully understood. Here, we investigate the molecular interactions that operate in concert between the HIV-1 capsid and the NPC that regulate capsid translocation through the central channel. To this end, we develop a "bottom-up" coarse-grained (CG) model of the human NPC from recently released cryo-electron tomography structure and then construct composite membrane-embedded CG NPC models. We find that successful translocation from the cytoplasmic side to the NPC central channel is contingent on the compatibility of the capsid morphology and channel dimension and the proper orientation of the capsid approach to the channel from the cytoplasmic side. The translocation dynamics is driven by maximizing the contacts between phenylalanine-glycine nucleoporins at the central channel and the capsid. For the docked intact capsids, structural analysis reveals correlated striated patterns of lattice disorder likely related to the intrinsic capsid elasticity. Uncondensed genomic material inside the docked capsid augments the overall lattice disorder of the capsid. Our results suggest that the intrinsic "elasticity" can also aid the capsid to adapt to the stress and remain structurally intact during translocation.


Assuntos
Capsídeo , HIV-1 , Humanos , Capsídeo/metabolismo , HIV-1/genética , Poro Nuclear/metabolismo , Proteínas do Capsídeo/genética , Transporte Ativo do Núcleo Celular , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Translocação Genética , Elasticidade
9.
Biophys J ; 123(1): 42-56, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37978800

RESUMO

During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-genomic RNA (gRNA) interactions play a crucial role in the multimerization process, which is yet to be fully understood. We performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to affect mainly the SP1 domain of the 18-mer and the matrix-capsid linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the nucleocapsid domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, and also regulates the dynamic organization of the local membrane region itself.


Assuntos
Produtos do Gene gag , HIV-1 , Produtos do Gene gag do Vírus da Imunodeficiência Humana , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag/química , Produtos do Gene gag/genética , Produtos do Gene gag/metabolismo , Genômica , HIV-1/metabolismo , RNA Viral/química , Montagem de Vírus
10.
bioRxiv ; 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-37577500

RESUMO

After ATP-actin monomers assemble filaments, the γ-phosphate is hydrolyzed from ATP within seconds and dissociates from the filament over several minutes. We used all-atom well-tempered metadynamics molecular dynamics simulations to sample the release of phosphate from filaments along with unbiased molecular dynamics simulations to study residues that gate release. Dissociation of phosphate from Mg2+ is rate limiting and associated with an energy barrier of 20 kcal/mol, consistent with experimental rates of phosphate release. Phosphate then diffuses in an internal cavity toward a gate formed by R177 suggested in prior computational studies and cryo-EM structures. The gate is closed when R177 hydrogen bonds with N111 and is open when R177 forms a salt bridge with D179. Most of the time interactions of R177 with other residues occludes the phosphate release pathway. Machine learning analysis reveals that the occluding interactions fluctuate rapidly. These occluded states have not been documented in cryo-EM reconstructions.

11.
J Chem Phys ; 159(22)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38078523

RESUMO

Coarse-grained (CG) molecular dynamics can be a powerful method for probing complex processes. However, most CG force fields use pairwise nonbonded interaction potentials sets, which can limit their ability to capture complex multi-body phenomena such as the hydrophobic effect. As the hydrophobic effect primarily manifests itself due to the nonpolar solute affecting the nearby hydrogen bonding network in water, capturing such effects using a simple one CG site or "bead" water model is a challenge. In this work, we systematically test the ability of CG one site water models for capturing critical features of the solvent environment around a hydrophobe as well as the potential of mean force (PMF) of neopentane association. We study two bottom-up models: a simple pairwise (SP) force-matched water model constructed using the multiscale coarse-graining method and the Bottom-Up Many-Body Projected Water (BUMPer) model, which has implicit three-body correlations. We also test the top-down monatomic (mW) and the Machine Learned mW (ML-mW) water models. The mW models perform well in capturing structural correlations but not the energetics of the PMF. BUMPer outperforms SP in capturing structural correlations and also gives an accurate PMF in contrast to the two mW models. Our study highlights the importance of including three-body interactions in CG water models, either explicitly or implicitly, while in general highlighting the applicability of bottom-up CG water models for studying hydrophobic effects in a quantitative fashion. This assertion comes with a caveat, however, regarding the accuracy of the enthalpy-entropy decomposition of the PMF of hydrophobe association.

12.
J Chem Phys ; 159(18)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37942867

RESUMO

Coarse-grained (CG) interactions determined via bottom-up methodologies can faithfully reproduce the structural correlations observed in fine-grained (atomistic resolution) systems, yet they can suffer from limited extensibility due to complex many-body correlations. As part of an ongoing effort to understand and improve the applicability of bottom-up CG models, we propose an alternative approach to address both accuracy and transferability. Our main idea draws from classical perturbation theory to partition the hard sphere repulsive term from effective CG interactions. We then introduce Gaussian basis functions corresponding to the system's characteristic length by linking these Gaussian sub-interactions to the local particle densities at each coordination shell. The remaining perturbative long-range interaction can be treated as a collective solvation interaction, which we show exhibits a Gaussian form derived from integral equation theories. By applying this numerical parametrization protocol to CG liquid systems, our microscopic theory elucidates the emergence of Gaussian interactions in common phenomenological CG models. To facilitate transferability for these reduced descriptions, we further infer equations of state to determine the sub-interaction parameter as a function of the system variables. The reduced models exhibit excellent transferability across the thermodynamic state points. Furthermore, we propose a new strategy to design the cross-interactions between distinct CG sites in liquid mixtures. This involves combining each Gaussian in the proper radial domain, yielding accurate CG potentials of mean force and structural correlations for multi-component systems. Overall, our findings establish a solid foundation for constructing transferable bottom-up CG models of liquids with enhanced extensibility.

13.
J Chem Theory Comput ; 19(23): 8987-8997, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37957028

RESUMO

Coarse-grained (CG) molecular dynamics (MD) has become a method of choice for simulating various large scale biomolecular processes; therefore, the systematic definition of the CG mappings for biomolecules remains an important topic. Appropriate CG mappings can significantly enhance the representability of a CG model and improve its ability to capture critical features of large biomolecules. In this work, we present a systematic and more generalized method called K-means clustering coarse-graining (KMC-CG), which builds on the earlier approach of essential dynamics coarse-graining (ED-CG). KMC-CG removes the sequence-dependent constraints of ED-CG, allowing it to explore a more extensive space and thus enabling the discovery of more physically optimal CG mappings. Furthermore, the implementation of the K-means clustering algorithm can variationally optimize the CG mapping with efficiency and stability. This new method is tested in three cases: ATP-bound G-actin, the HIV-1 CA pentamer, and the Arp2/3 complex. In these examples, the CG models generated by KMC-CG are seen to better capture the structural, dynamic, and functional domains. KMC-CG therefore provides a robust and consistent approach to generating CG models of large biomolecules that can then be more accurately parametrized by either bottom-up or top-down CG force fields.


Assuntos
HIV-1 , Simulação de Dinâmica Molecular , Algoritmos
14.
J Phys Chem B ; 127(49): 10564-10572, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38033234

RESUMO

Machine learning has recently entered into the mainstream of coarse-grained (CG) molecular modeling and simulation. While a variety of methods for incorporating deep learning into these models exist, many of them involve training neural networks to act directly as the CG force field. This has several benefits of which the most significant is accuracy. Neural networks can inherently incorporate multibody effects during the calculation of CG forces, and a well-trained neural network force field outperforms pairwise basis sets generated from essentially any methodology. However, this comes at a significant cost. First, these models are typically slower than pairwise force fields, even when accounting for specialized hardware, which accelerates the training and integration of such networks. The second and the focus of this paper is the need for a considerable amount of data to train such force fields. It is common to use 10s of microseconds of molecular dynamics data to train a single CG model, which approaches the point of eliminating the CG model's usefulness in the first place. As we investigate in this work, this "data-hunger" trap from neural networks for predicting molecular energies and forces can be remediated in part by incorporating equivariant convolutional operations. We demonstrate that, for CG water, networks that incorporate equivariant convolutional operations can produce functional models using data sets as small as a single frame of reference data, while networks without these operations cannot.

15.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37870140

RESUMO

This paper series aims to establish a complete correspondence between fine-grained (FG) and coarse-grained (CG) dynamics by way of excess entropy scaling (introduced in Paper I). While Paper II successfully captured translational motions in CG systems using a hard sphere mapping, the absence of rotational motions in single-site CG models introduces differences between FG and CG dynamics. In this third paper, our objective is to faithfully recover atomistic diffusion coefficients from CG dynamics by incorporating rotational dynamics. By extracting FG rotational diffusion, we unravel, for the first time reported to our knowledge, a universality in excess entropy scaling between the rotational and translational diffusion. Once the missing rotational dynamics are integrated into the CG translational dynamics, an effective translation-rotation coupling becomes essential. We propose two different approaches for estimating this coupling parameter: the rough hard sphere theory with acentric factor (temperature-independent) or the rough Lennard-Jones model with CG attractions (temperature-dependent). Altogether, we demonstrate that FG diffusion coefficients can be recovered from CG diffusion coefficients by (1) incorporating "entropy-free" rotational diffusion with translation-rotation coupling and (2) recapturing the missing entropy. Our findings shed light on the fundamental relationship between FG and CG dynamics in molecular fluids.

16.
bioRxiv ; 2023 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-37790356

RESUMO

The HIV-1 assembly process begins with a newly synthesized Gag polyprotein being targeted to the inner leaflet of the plasma membrane of the infected cells to form immature viral particles. Gag-membrane interactions are mediated through the myristoylated(Myr) N-terminal matrix (MA) domain of Gag which eventually multimerize on the membrane to form trimers and higher-order oligomers. The study of the structure and dynamics of peripheral membrane proteins like MA has been challenging for both experimental and computational studies due to the complex dynamics of protein-membrane interactions. Although the roles of anionic phospholipids (PIP2, PS) and the Myr group in the membrane targeting and stable membrane binding of MA are now well-established, the cooperative interactions between MA monomers and MA-membrane still remain elusive. Our present study focuses on the membrane binding dynamics of a higher-order oligomeric structure of MA protein (a dimer of trimers), which has not been explored before. Employing time-lagged independent component analysis (tICA) to our microsecond-long trajectories, we investigate conformational changes of the matrix protein induced by membrane binding. Interestingly, the Myr switch of a MA monomer correlates with the conformational switch of adjacent monomers in the same trimer. Together, our findings suggest that MA trimerization facilitates Myr insertion, but MA trimer-trimer interactions in the lattice of immature HIV-1 particles can hinder the same. Additionally, local lipid density patterns of different lipid species provide a signature of the initial stage of lipid-domain formation upon membrane binding of the protein complex.

17.
J Phys Chem B ; 127(40): 8537-8550, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37791670

RESUMO

The "bottom-up" approach to coarse-graining, for building accurate and efficient computational models to simulate large-scale and complex phenomena and processes, is an important approach in computational chemistry, biophysics, and materials science. As one example, the Multiscale Coarse-Graining (MS-CG) approach to developing CG models can be rigorously derived using statistical mechanics applied to fine-grained, i.e., all-atom simulation data for a given system. Under a number of circumstances, a systematic procedure, such as MS-CG modeling, is particularly valuable. Here, we present the development of the OpenMSCG software, a modularized open-source software that provides a collection of successful and widely applied bottom-up CG methods, including Boltzmann Inversion (BI), Force-Matching (FM), Ultra-Coarse-Graining (UCG), Relative Entropy Minimization (REM), Essential Dynamics Coarse-Graining (EDCG), and Heterogeneous Elastic Network Modeling (HeteroENM). OpenMSCG is a high-performance and comprehensive toolset that can be used to derive CG models from large-scale fine-grained simulation data in file formats from common molecular dynamics (MD) software packages, such as GROMACS, LAMMPS, and NAMD. OpenMSCG is modularized in the Python programming framework, which allows users to create and customize modeling "recipes" for reproducible results, thus greatly improving the reliability, reproducibility, and sharing of bottom-up CG models and their applications.

18.
bioRxiv ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37745364

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a lipid-enveloped virus that acquires its lipid bilayer from the host cell it infects. SARS-CoV-2 can spread from cell to cell or from patient to patient by undergoing assembly and budding to form new virions. The assembly and budding of SARS-CoV-2 is mediated by several structural proteins known as envelope (E), membrane (M), nucleoprotein (N) and spike (S), which can form virus-like particles (VLPs) when co-expressed in mammalian cells. Assembly and budding of SARS-CoV-2 from the host ER-Golgi intermediate compartment is a critical step in the virus acquiring its lipid bilayer. To date, little information is available on how SARS-CoV-2 assembles and forms new viral particles from host membranes. In this study, we find the N protein can strongly associate with anionic lipids including phosphoinositides and phosphatidylserine. Moreover, lipid binding is shown to occur in the N protein C-terminal domain, which is supported by extensive in silico analysis. Anionic lipid binding occurs for both the free and N oligomeric forms suggesting N can associate with membranes in the nucleocapsid form. Herein we present a lipid-dependent model based on in vitro, cellular and in silico data for the recruitment of N to M assembly sites in the lifecycle of SARS-CoV-2.

19.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645781

RESUMO

During the HIV-1 assembly process, the Gag polyprotein multimerizes at the producer cell plasma membrane, resulting in the formation of spherical immature virus particles. Gag-gRNA interactions play a crucial role in the multimerization process, which is yet to be fully understood. We have performed large-scale all-atom molecular dynamics simulations of membrane-bound full-length Gag dimer, hexamer, and 18-mer. The inter-domain dynamic correlation of Gag, quantified by the heterogeneous elastic network model (hENM) applied to the simulated trajectories, is observed to be altered by implicit gRNA binding, as well as the multimerization state of the Gag. The lateral dynamics of our simulated membrane-bound Gag proteins, with and without gRNA binding, agree with prior experimental data and help to validate our simulation models and methods. The gRNA binding is observed to impact mainly the SP1 domain of the 18-mer and the MA-CA linker domain of the hexamer. In the absence of gRNA binding, the independent dynamical motion of the NC domain results in a collapsed state of the dimeric Gag. Unlike stable SP1 helices in the six-helix bundle, without IP6 binding, the SP1 domain undergoes a spontaneous helix-to-coil transition in the dimeric Gag. Together, our findings reveal conformational switches of Gag at different stages of the multimerization process and predict that the gRNA binding reinforces an efficient binding surface of Gag for multimerization, as well as regulates the dynamic organization of the local membrane region itself. Significance: Gag(Pr 55 Gag ) polyprotein orchestrates many essential events in HIV-1 assembly, including packaging of the genomic RNA (gRNA) in the immature virion. Although various experimental techniques, such as cryo-ET, X-ray, and NMR, have revealed structural properties of individual domains in the immature Gag clusters, structural and biophysical characterization of a full-length Gag molecule remains a challenge for existing experimental techniques. Using atomistic molecular dynamics simulations of the different model systems of Gag polyprotein, we present here a detailed structural characterization of Gag molecules in different multimerization states and interrogate the synergy between Gag-Gag, Gag-membrane, and Gag-gRNA interactions during the viral assembly process.

20.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425801

RESUMO

Actin filament networks are exposed to mechanical stimuli, but the effect of strain on actin filament structure has not been well-established in molecular detail. This is a critical gap in understanding because the activity of a variety of actin-binding proteins have recently been determined to be altered by actin filament strain. We therefore used all-atom molecular dynamics simulations to apply tensile strains to actin filaments and find that changes in actin subunit organization are minimal in mechanically strained, but intact, actin filaments. However, a conformational change disrupts the critical D-loop to W-loop connection between longitudinal neighboring subunits, which leads to a metastable cracked conformation of the actin filament, whereby one protofilament is broken prior to filament severing. We propose that the metastable crack presents a force-activated binding site for actin regulatory factors that specifically associate with strained actin filaments. Through protein-protein docking simulations, we find that 43 evolutionarily-diverse members of the dual zinc finger containing LIM domain family, which localize to mechanically strained actin filaments, recognize two binding sites exposed at the cracked interface. Furthermore, through its interactions with the crack, LIM domains increase the length of time damaged filaments remain stable. Our findings propose a new molecular model for mechanosensitive binding to actin filaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...